Game theory boosts cognitive radio


Friday, 07 April, 2017


Game theory boosts cognitive radio

Researchers are using game theory to design more bandwidth-efficient wireless networks.

A network management scheme developed by King Abdullah University of Science and Technology (KAUST) researchers enables users from different network providers to pair up to make better use of the available wireless spectrum although the two users know little about each other.

Wireless networks are groaning under the strain of an ever-increasing number of mobile devices and data-hungry applications, such as video streaming. This means network engineers are searching for alternative methods to utilise the available wireless bandwidth. Although wireless technology is improving all the time, a major source of inefficiency persists in the way that telecommunication companies divide up the wireless spectrum.

Dr Doha Hamza and Jeff Shamma, Professor of Electrical Engineering, have developed a way for strangers to pair up to make better use of the available bandwidth.

“Cognitive radio technology, as we call it, is a promising approach to solve the wireless spectrum scarcity problem,” explained Hamza.

“This technology allows secondary unlicensed users to access the primary licensed users’ frequency bands.

“To make this possible, the primary and secondary users need to be robustly paired in a way that ensures mutual benefit while maintaining quality-of-service constraints.”

Hamza and Shamma turned to a subfield of game theory called matching theory to deal with the cognitive radio pairing problem. Matching theory is a mathematical framework for forming pairs from two groups that is already used routinely for several applications, such as organ exchange programs, university admissions and communications networks.

Doha Hamza and Jeff Shamma standing in front of a whiteboard.

KAUST researchers Doha Hamza (right) and Jeff Shamma have developed a way for paired strangers to buddy up to make better use of bandwidth.

“Primary users and secondary users need to be matched so that the partnership is mutually beneficial and binding,” said Shamma. “Different partnerships can provide different benefits, and primary and secondary users can have preferences over possible partnerships.

“However, unlike conventional applications for matching theory, there is no central authority to regulate the market, meaning that primary and secondary users have limited information about the preferences of other actors.”

To address the lack of centralisation, the researchers developed a ‘blind’ matching algorithm involving a relatively simple learning process. The agents meet one on one and make proposals based on their current aspirations.

The proposals may be accepted or rejected, resulting in the forming and breaking of partnerships.

Likewise, agent aspirations regarding the potential benefit of finding a partner may also rise and fall.

The algorithm is broadly applicable to general matching settings, but it is particularly useful for implementing in cognitive radio networks.

“Despite the blind encounters and limited information, we showed that this simple dynamic converges to a stable matching state in which no pair of agents has an incentive to break their current matches in favour of others,” said Shamma.

Images courtesy KAUST and ACMA

Follow us on Twitter and Facebook

Related Articles

The new wildfire reality: mapping a response

Firefighter-turned-researcher Chris Dunn is helping pioneer data-driven solutions to tackle...

ARCIA update: LMR is not dead yet

Be it mining, rail, public safety, transport or utilities, everyone is embracing new technology...

Towards 1 Tbps throughput using sub-terahertz bands

In order to enable the near-instantaneous communication promised by 6G, ultrahigh data speeds...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd