
Prototyping Next Generation Wireless Systems with

Software Defined Radios

Overview

Around the world, wireless consumers’ insatiable demand for bandwidth has spurred

unprecedented levels of investment from public and private sectors to explore new ways to

increase network capacity and meet escalating demand. Software defined radios (SDRs) have

emerged as a viable prototyping option for next generation wireless research by enabling

researchers to quickly prototype a system, characterize it’s performance, and iterate on the

design.

Table of Contents

1. Insatiable Demand for Bandwidth

2. Rapid Prototyping with Software Defined Radio

3. Simplified Approaches to PHY Layer Design and Prototyping

4. Host-based SDRs

5. Heterogeneous Processing SDRs

6. Conclusion

7. Next Steps

1. Insatiable Demand for Bandwidth

Around the world, wireless consumers’ insatiable demand for bandwidth (Figure 1) has

spurred unprecedented levels of investment from public and private sectors to explore new

ways to increase network capacity and meet escalating demand. Industry analysts postulate

demand will outpace capacity and it’s simply a matter of when. Against this backdrop,

wireless researchers continue to put forth new ideas to address capacity challenges. Some

topical areas span low-level Physical Layer (PHY) algorithms to upper layer medium access

control (MAC) and even cross layer exploration on new heterogeneous network topologies

incorporating pico and femto cells, and relays. In all probability, wireless service providers

may not rely on one “silver bullet” to alleviate capacity constraints, but rather employ a

combination of techniques. Although there is no shortage of new concepts and theories, the

time to transition from concept to simulation to prototype to deployment in a real network

can take many years. In particular, transitioning from concept/simulation, which is largely a

software exercise, to a working prototype with real signals and waveforms requires extensive

investments in time and money, and has been an impediment to the adoption of new

techniques to alleviate the wireless bandwidth crunch.

http://www.ni.com/white-paper/14297/en/#toc1
http://www.ni.com/white-paper/14297/en/#toc2
http://www.ni.com/white-paper/14297/en/#toc3
http://www.ni.com/white-paper/14297/en/#toc4
http://www.ni.com/white-paper/14297/en/#toc5
http://www.ni.com/white-paper/14297/en/#toc6
http://www.ni.com/white-paper/14297/en/#toc7

Figure 1 Reference: FCC Report 10/2010

2. Rapid Prototyping with Software Defined Radio

Software defined radios (SDRs) have emerged as a viable prototyping option for next

generation wireless research by enabling researchers to quickly prototype a system,

characterize it’s performance, and iterate on the design. Today, researchers mostly rely on

software simulation to test their theories employing simplified channel models (ie AWGN),

that loosely emulate real-world conditions Incorporating fading models, such as Rayleigh or

Ricean, may improve the simulation for mobile scenarios; however these models fall short in

accurately portraying all network conditions and offer little insight into deployment

feasibility. Furthermore, more sophisticated network topologies such as Multi-user MIMO

(MU-MIMO) and Coordinated Multipoint (CoMP) are simply very difficult to model

accurately. SDRs can accelerate prototyping as researchers utilize the inherent software re-

configurability and system flexibility. Researchers using SDRs can develop, deploy, test and

iterate on new signal processing algorithms and/or system software quicker and easier than

conventional approaches.

SDRs functionally mirror real mobile devices and/or cellular base stations by employing

parallel processing architectures with representative RF front ends. While SDRs promise

software re-configurability, it does not come for free. Of particular note, the computational

partitioning of signal processing blocks among parallel heterogeneous computational engines

that comprise today’s wireless systems can be difficult and even daunting. Without a

thorough understanding of processing, latency, and throughput; researchers may fall into a

seemingly endless cycle of trial and error. Careful choice of tools and SDR platforms can

significantly reduce the transition from simulation to prototype.

http://Reference:%20http:/www.xgtechnology.com/images/docs/new%20approaches%20to%20optimizing%20radio%20spectrum%20-%20andy%20seybold%20inc%20-%20dec%209%202011%202.pdf

General Purpose Processors (GPPs) have benefitted from Moore’s Law (Figure 2) and now

offer SDR developers a rich option for prototyping both PHY and even upper layer

software.

Figure 2. Performance of CPU/GPPs and FPGAs over time.

Rather than increasing the GPP clock rate, GPPs have become parallel execution engines in

their own right as GPP manufacturers increase the number of processing cores in a single

monolithic integrated circuit. Multiple cores in a GPP increase processing capability

exponentially. When using SDRs with multi-core GPPs, the system developer must

distribute the signal processing blocks among the cores and coherently bind them

together. With this approach, researchers can avoid many system and software development

pitfalls posed by heterogeneous processing architectures. Ideally, SDRs could use a single

multi-core GPP to simplify development. However in many of today’s applications, this

approach is not practical as issues such as determinism and latency are difficult to address

reliably with just a single multi-core GPP and standard operating systems. In these cases,

more sophisticated and capable SDR platforms using GPPs and FPGAs provide an attractive

option as FPGAs (Figure 3) can address the real-time signal processing requirements of

wireless research.

Figure 3: Generic SDR block diagram

3. Simplified Approaches to PHY Layer Design and Prototyping

Although SDRs promise to further and hasten the time to results for wireless researchers, the

actual system development and integration can take time especially with systems that have

loose hardware / software connectivity compounded by the need to use multiple yet

disaggregated software development tools.

Some attributes to consider when developing a real-world prototype using an SDR are:

1. Tight hardware integration with abstraction

2. Software tools that offer simulation, target compilation, and compatibility with

models of computation embracing other languages/tools

3. Heterogeneous multiprocessing capabilities to simplify algorithm deployment among

the computational engines

Hardware Abstraction

Software environments that provide tight integration with the hardware may offer the benefit

of hardware abstraction. By abstracting the hardware complexity, researchers can quickly

transition from simulation to a prototype as simpler, easier to understand hardware APIs are

presented in the software tool. Abstraction does come with a price. Ostensibly, abstraction

offers faster prototyping at the expense of optimization of platform resources. Software

design tools that offer multiple layers of abstraction from high to low (meaning more granular

control) can enable researchers to tradeoff development time for optimization and vice versa

to finely tune system performance.

Comprehensive Software Development Environments

SDR system development tools must not only comprehend heterogeneous processing

elements, but also different models of computation and other design languages where initial

concepts may be developed. The system design software should embrace software IP blocks

developed with other tools as well as code created in different languages or encapsulated as a

binary object (ex Dynamic Linked Library, VHDL or other). By accommodating alternative

models of computation and design languages, comprehensive software development

environments, and system design tools can leverage code developed with other tools

maximizing software reuse.

System design tools that offer communications and signal processing libraries also facilitate

rapid prototyping. For example, a researcher may be only interested in prototyping a single

PHY algorithm, such as a new modulation technique or coding scheme in a signal

chain. However to prototype with real signals and waveforms, the other blocks in the chain

must be present during execution to assess performance of the modified or new

block. Without the basic communications IP blocks, the researcher would have to build these

blocks from scratch; a very expensive and time-consuming process.

A final point regarding comprehensive software development environments and system

design tools refers to simulation. Simulation is a critical step in the design and development

process as transitioning to the hardware prototype takes time even for optimized

flows. FPGAs, in particular, suffer from long compile, synthesize, and place-and-route times

that delay time to result. Consider the inevitable iteration – trial and error – on algorithm

development where each cycle incurs this delay. As discussed above, the transition from the

floating point model to a fixed point model must be addressed for the researcher to gain

confidence in the fixed point implementation prior to FPGA deployment. Software

environments that provide the tools to iterate data types and evaluate the algorithm at a bit-

by-bit level (bit exact) can streamline the development by providing immediate visibility into

a design. These tools can produce metrics for evaluating the quality of result (QOR) along

with providing a test bench to automate the QOR analysis and confirm functionality.

Simulation and even emulation where the hardware environment can be co-simulated with

the algorithms in a system are particularly valuable in expediting designs and building rapid

prototypes. Tools that ultimately enable simulation on the host GPPs are critically important

to the researcher.

Heterogeneous Multiprocessing

Most SDR software tools focus on a specific hardware target encompassing a wide range of

GPPs, FPGAs, or DSPs. With various processing elements and multiple cores available on

many SDRs, a common design flow with heterogeneous multiprocessing capabilities is

desired to shorten the learning curve compared to multi-tool approaches, to streamline

software development in a unified design flow, and to simplify system

integration. Alternatively, an approach that employs several software tools significantly

extends the system integration timeline as each dedicated tool focuses on a specific task and

specific core, and the user must integrate the individual components into a real working

system using a variety of debugging features offered by each tool. True heterogeneous

multiprocessing (Figure 4) capabilities enable users to build systems using a common

language and design flow to multiple targets, and can reduce the learning curve associated

with having to master multiple tools with the additional benefit of simplifying system

integration.

In addition to heterogeneous multiprocessing, tools that comprehend parallel execution,

pipelining, and multiple data flows match well with the parallel execution SDR

paradigm. Sequential languages and compilers do not expose parallelism to the user nor do

they present methods to realize true parallel execution, whether the processing target is an

FPGA, DSP or a multi-core GPP.

A common design flow facilitating the transition from concept to simulation and to prototype

is rare but necessary to reduce the time to build the prototype and facilitate rapid iteration. In

fact, communications systems design tools that present a common, integrated flow with

hardware abstraction enable communications and signal processing domain experts to rapidly

prototype and iterate on their ideas reducing development time and expense.

Figure 4. Heterogeneous multi-processing architecture

4. Host-based SDRs

LabVIEW graphical design system software from National Instruments offers many of the

attributes noted above for rapid prototyping with SDRs. The tight integration between

LabVIEW and SDR platforms, such as the Universal Software Radio Peripheral (USRP ™),

abstracts the low-level hardware complexities and enables the researcher to focus on

improving and evolving their algorithms with a flexibility of system partitioning.

LabVIEW offers parallel constructs spanning multiple cores, threads and targets providing a

seamless software development flow from host to real-time embedded processors and also to

FPGAs. Researchers can incorporate their design code in the LabVIEW environment with

full emulation on the host and then migrate the code algorithms to faster targets or multiple

GPP cores to meet timing constraints.

The NI USRP SDR architecture provides both GPP (via a host computer connected through a

Gigabit Ethernet connection) and FPGA processing capabilities. The FPGA executes basic

channelization, pulse shaping, and downsampling / upsampling signal processing functions in

real-time with limited run-time configuration options. The researcher develops and executes

the PHY code on the Host GPP and can iterate quickly using the inherent floating point

capabilities. There are advantages and disadvantages to this approach. A brief summary is

presented below:

Advantages

1. Single target – multi-core GPP, which reduces system design complexity

2. No floating point to fixed point math transition

3. Tight hardware/software integration with abstraction

4. Comprehensive development platform for multi-core software design and

implementation

5. Rich communications software libraries available to speed development

6. Compatibility with other software design tools and languages

Disadvantages

1. Limited FPGA real-time processing capacity

The combination of NI USRP and LabVIEW with multi-core GPPs (Figure 5) offer

advantages to SDR developers by providing multiple processing engines running in parallel

to effectively increase processing capacity higher than increasing the clock rate alone. The

developer can partition signal processing tasks among the available cores so that the code

runs in parallel. In effect, the greater number of cores, the more capable the

prototype. Considering this architecture, more of the user code executes on the Host

GPP. Unfortunately, code written targeting standard off-the-shelf operation systems does not

execute predictably or deterministically. However as many researchers have seen, pedestrian

GPP technology continues to advance overcoming many latency constraints to address more

and more SDR and wireless prototyping applications. Furthermore, as GPPs incorporate

more cores, faster clocks rates and more sophisticated caching schemes, SDRs such as the NI

USRP with LabVIEW inherently become more powerful.

Should the NI USRP lack the computational horsepower to facilitate more sophisticated

prototyping, other options are available.

Figure 5. NI USRP-2920 System Block Diagram

5. Heterogeneous Processing SDRs

Research that requires significant computational capabilities, including dedicated real-time

signal processing, may require FPGAs and GPPs, and perhaps multiple instances of each

(Figure 6). As discussed above, developing software for a heterogeneous multiprocessing

system prototype can be challenging and may require “tool specialists” to implement the

algorithms and software honed to a specific processing target.

The researcher develops and executes the PHY code on the Host GPP and then partitions the

Rx and/or Tx chain among the processing elements. There are advantages and disadvantages

to this approach. A brief summary is presented below:

Advantages

1. Rich processing environment to address demanding wireless applications

2. Tight hardware/software integration with abstraction

3. Comprehensive development platform for multi-core software design and

implementation

4. Rich communications software libraries available to speed development

5. Compatibility with other software design tools and languages

Disadvantages

1. Increased system complexity

LabVIEW graphical system design software enables users to develop software for each target

using a common language. Algorithms can be developed on the host GPP in a simulation

environment and then ported to any of the available processing elements as required by the

system. In the example diagram, the amount of processing power available to the developer

is significant – a multi-core Windows PC, a multi-core RT GPP, and a number of FlexRIO

FPGAs modules – yet the system integration aspects are simplified because the software and

hardware integration is abstracted. True software re-configurability can be achieved a

number of ways, but with an integrated system design tool such as LabVIEW, the path to

prototyping is shorter.

Figure 6: NI FlexRIO and LabVIEW RT SDR System Diagram

6. Conclusion

Wireless bandwidth demands are quickly reaching the capacity of the available

spectrum. Therefore, new technologies are needed to extract more bits from the same amount

of spectrum. As wireless researchers struggle to transition their ideas to standardization for

mass deployment, SDRs offer software re-configurability, which in turn empowers

researchers to quickly transition from simulation to real working prototypes using live signals

and waveforms and iterate on their designs ultimately expediting deployment. In this way,

SDR platform using graphical design tools such as LabVIEW deliver a path to faster time to

results and validation of new ideas to address the world’s wireless bandwidth challenges.

