Tiny antennas could have a big impact


By John Toon
Tuesday, 10 July, 2018


Tiny antennas could have a big impact

Research that combines electronics and antennas could lead to longer talk time and higher data rates in 5G devices.

By integrating the design of antenna and electronics, researchers have boosted the energy and spectrum efficiency of a new class of millimetre-wave transmitters, enabling improved modulation and reduced generation of waste heat.

The result could be longer talk time and higher data rates in millimetre-wave wireless communication devices for future 5G applications.

The new co-design technique enables simultaneous optimisation of the millimetre-wave antennas and electronics. The hybrid devices use conventional materials and IC technology, meaning no changes would be required to manufacture and package them.

The co-design scheme enables fabrication of multiple transmitters and receivers on the same IC chip or the same package, potentially enabling multiple-input-multiple-output (MIMO) systems as well as boosting data rates and link diversity.

“In this proof-of-example, our electronics and antenna were designed so that they can work together to achieve a unique on-antenna outphasing active load modulation capability that significantly enhances the efficiency of the entire transmitter,” said Hua Wang, an assistant professor in Georgia Tech’s School of Electrical and Computer Engineering.

“This system could replace many types of transmitters in wireless mobile devices, base stations and infrastructure links in data centres.”

Key to the new design is maintaining a high energy efficiency regardless of whether the device is operating at its peak or average output power.

The efficiency of most conventional transmitters is high only at peak power but drops substantially at low power levels, resulting in low efficiency when amplifying complex spectrally efficient modulations.

Moreover, conventional transmitters often add the outputs from multiple electronics using lossy power combiner circuits, exacerbating the efficiency degradation.

“We are combining the output power through a dual-feed loop antenna, and by doing so with our innovation in the antenna and electronics, we can substantially improve the energy efficiency,” said Wang, who is the Demetrius T. Paris Professor in the School of Electrical and Computer Engineering.

“The innovation in this particular design is to merge the antenna and electronics to achieve the so-called outphasing operation that dynamically modulates and optimises the output voltages and currents of power transistors, so that the millimetre-wave transmitter maintains a high energy efficiency both at the peak and average power.”

Beyond energy efficiency, the co-design also facilitates spectrum efficiency by enabling more complex modulation protocols. This will enable transmission of a higher data rate within the type of fixed spectrum allocation that poses a significant challenge for 5G systems.

“Within the same channel bandwidth, the proposed transmitter can transmit six to ten times higher data rate,” Wang said. “Integrating the antenna gives us more degrees of freedom to explore design innovation, something that could not be done before.”

Sensen Li, a Georgia Tech graduate research assistant, said the innovation resulted from bringing together two disciplines that have traditionally worked separately.

“We are merging the technologies of electronics and antennas, bringing these two disciplines together to break through limits,” he said. “These improvements could not be achieved by working on them independently. By taking advantage of this new co-design concept, we can further improve the performance of future wireless transmitters.”

Huy Thong Nguyen, Sensen Li and Hua Wang standing next to electronics equipment

Georgia Tech Graduate Research Assistant Huy Thong Nguyen, Graduate Research Assistant Sensen Li and Assistant Professor Hua Wang with the electronics equipment and antenna set-up used to measure far-field radiated output signal from millimetre-wave transmitters. Credit: Allison Carter, Georgia Tech.

The new designs have been implemented in 45-nanometre CMOS SOI IC devices and flip-chip packaged on high-frequency laminate boards, where testing has confirmed a minimum two-fold increase in energy efficiency, Wang said.

The antenna electronics co-design is enabled by exploring the unique nature of multi-feed antennas.

“An antenna structure with multiple feeds allows us to use multiple electronics to drive the antenna concurrently. Different from conventional single-feed antennas, multi-feed antennas can serve not only as radiating elements, but they can also function as signal processing units that interface among multiple electronic circuits,” Wang explained.

“This opens a completely new design paradigm to have different electronic circuits driving the antenna collectively with different but optimised signal conditions, achieving unprecedented energy efficiency, spectral efficiency and reconfigurability.”

The cross-disciplinary co-design could also facilitate fabrication and operation of multiple transmitters and receivers on the same chip, enabling hundreds or even thousands of elements to work together as a whole system.

“In massive MIMO systems, we need to have a lot of transmitters and receivers, so energy efficiency will become even more important,” Wang noted.

Having large numbers of elements working together becomes more practical at millimetre-wave frequencies because the wavelength reduction means elements can be placed closer together to achieve compact systems, he pointed out. These factors could pave the way for new types of beamforming that are essential in future millimetre-wave 5G systems.

Power demands could drive adoption of the technology for battery-powered devices, but Wang said the technology could also be useful for grid-powered systems such as base stations or wireless connections to replace cables in large data centres. In those applications, expanding data rates and reducing cooling needs could make the new devices attractive.

“Higher energy efficiency also means less energy will be converted to heat that must be removed to satisfy the thermal management,” he said. “In large data centres, even a small reduction in thermal load per device can add up. We hope to simplify the thermal requirements of these electronic devices.”

The research team — which also included Taiyun Chi, Huy Thong Nguyen and Tzu-Yuan Huang, all from Georgia Tech — presented its proof-of-concept antenna-based outphasing transmitter at the 2018 Radio Frequency Integrated Circuits Symposium (RFIC) in Philadelphia. The team’s other antenna-electronics co-design work was published at the 2017 and 2018 IEEE International Solid-State Circuits Conference (ISSCC) and in multiple peer-reviewed IEEE journals. The Intel Corporation and US Army Research Office sponsored the research.

Pictured, top: One of the packaged millimetre-wave transmitters with antenna-electronics co-designed collaboratively by the Georgia Tech researchers. The ultra-miniaturised IC chip contains an antenna and all the required electronics for millimetre-wave signal generation and transmitting. Multiple IC chips can be tiled together to form a large array for 5G MIMO applications. Credit: Allison Carter, Georgia Tech.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.

Related Articles

The new wildfire reality: mapping a response

Firefighter-turned-researcher Chris Dunn is helping pioneer data-driven solutions to tackle...

ARCIA update: LMR is not dead yet

Be it mining, rail, public safety, transport or utilities, everyone is embracing new technology...

Towards 1 Tbps throughput using sub-terahertz bands

In order to enable the near-instantaneous communication promised by 6G, ultrahigh data speeds...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd