NEC tests new D-band RF IC technology

NEC Australia Pty Ltd

By Jonathan Nally
Monday, 16 March, 2020

NEC tests new D-band RF IC technology

NEC Corporation says it has successfully demonstrated bidirectional 10 Gbps outdoor transmission using all-outdoor packet microwave radios with RF IC chip technology compatible with the D-band (130 to 174.8 GHz).

According to NEC, the wide bandwidth of D-band has recently been attracting attention for its potential for expansion of bandwidths or higher modulation schemes that will become mandatory for 5G.

To achieve the result, the company developed RF modules comprising an RF IC chipset operational in the D-band. The ICs — flipchips mounted on a quartz glass plate — have multiple functions, such as amplifying and converting frequency.

The tests successfully achieved 10 Gbps error-free outdoor transmission at a distance of 150 metres with Frequency Division Duplex using all-in-one prototype equipment.

The frequency points for the transmitter and the receiver were 142 GHz and 157 Hz respectively, the modulation scheme was 128 QAM and the modulation speed was 1.6 Gbaud.

Additional field tests were conducted over a four-month period over a link distance of approximately 1 kilometres as part of preparation for practical applications.

The company plans to apply the technology to its iPASOLINK series of compact microwave radio products and aims to expand its usage into the kind of ultra-high capacity fronthaul and backhaul networks that will be needed to support 5G commercialisation.

Image courtesy NEC Corporation.

Related News

Webinar: Turning data protection into a business advantage

Backup is no longer a safety net, but a strategic tool for risk reduction — and the...

NVIDIA and Nokia partner to pioneer AI platform for 6G

The partnership is said to mark the beginning of the AI-native wireless era, helping to support...

Orbital traffic surges, as 13,000 active satellites recorded

As of 1 October 2025, there were 15,965 satellites catalogued around Earth, including 13,026...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd